HIRDLS

HIGH RESOLUTION DYNAMICS LIMB SOUNDER

Originator: Gary Heyman		Date: 1997-04-04
Subject / Title: FIR Filter Timing Test		
This is a report on a timing test run on an processing load on the IPU processor due data.		
Key Words: timing, test, processing, demo	odulation, FIR, filtering, flig	ht software
Reviewed By:	Approved By:	
Advar	nced Technology Center	

Palo Alto, CA 94304-1191

Lockheed Martin Missiles & Space

3251 Hanover Street

USA

TC-LOC-201

1 Scope

This TC presents the results of a timing test for the FIR filter algorithm performed on an engineering model R6000 VME-based computer while attending the RAD6000 training session at Lockheed Martin Federal Systems Division on March 25 - 27, 1997.

2 Reference Documents

TC-UCB-005 HIRDLS In-Flight Signal Processing

3 Signal Processing Description

While attending the R6000 training a program (firtst.c) was coded and run which performs data demodulation and a 32 tap FIR filter on one chopper revolution of data. The code was written based on infomation found in TC-UCB-005 (HIRDLS In-Flight Signal Processing) and is shown in Appendix A. The program uses arrays of 13 (16 bit integers) which were demodulated into 6 (64 bit floating point) "samples" for each of 32 detectors followed by a 32 tap FIR filter with dummy FIR coefficients. A total of 32 detectors were used (instead of 21) to accommodate possible demodulation and FIR filter processing of HIRDLS pointing data.

Test Setup: A VME based R6000 running at 5 MhZ was the target system. The VxWorks kernel was running and a VxWorks command shell was used to download and run the program from a Sun Workstation. We used the VxWorks function call "timexN(firtst)" to execute and calculate the execution time of the FIR test algorithm "firtst".

Results: The Execution time was 9.53 msec @ 5MhZ which translates to:

2.38 msec @ 20 MhZ

or

1.44 msec @ 33 MhZ

The nominal time per chopper revolution is 12.0 msec (83.3 Hz) so the CPU usage is:

2.38/12.0 = 19.83% @ 20 MhZ

or

1.44/12.0 = 12.00% @ 33 MhZ

TC-LOC-201

These results are consistent with preivous estimates and represent a significant load to the IPU processor but should allow completion of the FIR processing to be accomplished in the IPU rather than requiring a separate processor (DSP) for this task.

Notes: The "firtst" program is very simplistic. It assumes the input data resides in memory (i.e. no I/O is required to get it) and no validity checking is done on the results. Nor is any telemetery formatting included. If the demodulation coefficients are indeed $\pm 1/2$ and ± 1 then some time might be saved by not using floating point operations for the demodulation.

4 Acronyms

FIR Finite duration Impulse Response

VME Versabus Module - European

--END--

Appendix A **FIR Timing Program** 3/21/97 /* Gary Heyman fir.c * Project: HIRDLS * Subsystem: IPU * Description: Test program for SPU Data decomutation and FIR filter * */ #include <stdio.h> #define D1 -0.5 #define D2 +1.0#define D3 -0.5 #define NUM_DETECTORS 32 #define NUM_FIR_TAPS 32 #define SAMPLES_PER_REV 12 /* <<<<<< ra> /* <<<<< ra> /* <<<<< ra> /* <<<< ra> /* <<< ra> /* <<<< ra> /* <<< ra> /* <</td> void firtst(int reset); int main(void) {

```
firtst(1);
 while(1) {
   firtst(0);
/* return (0);
}
void firtst(int reset)
{
 static int sample[SAMPLES_PER_REV+1][NUM_DETECTORS];
 static double decom[NUM_FIR_TAPS][NUM_DETECTORS], q[NUM_DETECTORS];
 int det,s,d,tap;
 static double C[NUM_FIR_TAPS]={1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,
               1.11,1.12,1.13,1.14,1.15,1.16,1.17,1.18,1.19,1.20,
               1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.30,
              1.31,1.32};
 static double D[3]=\{D1,D2,D3\};
 /* initialize arrays */
 if (reset) {
   for (s=0; s<(SAMPLES_PER_REV+1); s++)
       for (det=0; det<NUM_DETECTORS; det++)
         sample[s][det]=0;
   for(tap=0; tap<NUM_FIR_TAPS; tap++)</pre>
       for (det=0; det<NUM_DETECTORS;det++)</pre>
```

```
decom[tap][det]=0;
   for (det=0; det<NUM_DETECTORS; det++)
       q[det]=0;
 }
 /* decom the s array into d */
 for (d=0; d<6; d++) {
   for(det=0; det<NUM_DETECTORS; det++) {</pre>
       s=d<<1;
       decom[d][det]= sample[s][det]*D[0]
                 +sample[s+1][det]*D[1]
                 +sample[s+2][det]*D[2];
   }
 }
 /* 32 Tap FIR */
 for (tap=0; tap<NUM_FIR_TAPS; tap++) {
   for (det=0; det<NUM_DETECTORS; det++) {
       q[det]+= C[tap]*decom[tap][det];
   }
}
```